Title of the course: Introduction to complex analysis, with a taste of hyperbolic geometry
Instructor: Dr. Alexandre Ramos-Peon  
Institution: University of Oslo
Dates: 31 July – 13 August 2017
Prerequisites: Basic calculus and linear algebra.
Level: Graduate, advanced undergraduate, beginning undergraduate
Abstract: This two-week course is an introduction to complex analysis in one variable. The approach will be geometric in flavour,
and might be perceived as “lighter” than most very rigourous treatments, such as the one in Ahlfors. In the first week, we start from
scratch and develop notation for complex numbers, complex fucntions and their visualization, the complex derivative (Caudhy Riemann
equations and their interpretation, integral formulas and its consequences), as well as complex integration. An intuitive approach is prefered,
but we will do some analytical proofs.
In the second week, we study Möbius transformations on the complex plane and their geometry. The Riemann sphere is explored, and
Möbius transformations classified.  Introduction to hyperbolic geometry: upper-half plane and disk models and their isometries. We finally
prove that isometries of the hyperbolic plane are exactly Möbius transformations.
Textbook or/and course webpage:
Conway “Functions of one complex variable “ (chapters I,III,IV, maybe V.3 and VI. 1)
Stein and Shakarchi “Complex Analysis” (chapters 1,2,8)
Needham “Visual introduction to complex analysis”
Language: EN